Методика розв’язування задач на рух

Педагогіка » Формування в учнів умінь розв’язувати задачі на рух » Методика розв’язування задач на рух

Заработок на криптовалютах по сигналам. Больше 100% годовых!

Заработок на криптовалютах по сигналам

Трейдинг криптовалют на полном автомате по криптосигналам. Сигналы из первых рук от мощного торгового робота и команды из реальных профессиональных трейдеров с опытом трейдинга более 7 лет. Удобная система мгновенных уведомлений о новых сигналах в Телеграмм. Сопровождение сделок и индивидуальная помощь каждому. Сигналы просты для понимания как для начинающих, так и для опытных трейдеров. Акция. Посетителям нашего сайта первый месяц абсолютно бесплатно.

Обращайтесть в телеграм LegionCryptoSupport

Сторінка 12

Перевірка: 2 • 8=16 (км) – проплив пліт за 8 год, а катер – за 1 год.

Відповідь: 2 км/год – швидкість течії.

Задача 12. Від пристані А спускається вниз за течією катер зі швидкістю 16 км/год на відстань 96 км і повертається назад, витративши на шлях у обидва кінці 14 год. Яка швидкість течії?

Графічна схема умови задачі:

Виходячи з того, що дану задачу учням важко розв’язати на уроці, ми використовували її у позакласній роботі з математики. Перед розв'язуванням задачі доцільно дати учням завдання скласти числовий вираз для знаходження різниці між швидкістю катера за течією і його швидкістю проти течії, якщо швидкість катера у стоячій воді – 14 км/год, а швидкість течії – 2 км/год.

(14 + 2) – (14 – 2) = 16 – 12 = 4 = 2 • 2.

Учні побачать, що швидкість катера за течією більша за його швидкість проти течії на подвійну швидкість течії.

Це саме можна зобразити за допомогою графічної схеми:

Якщо довжина відрізка АВ зображує швидкість катера у стоячій воді, а ВД – швидкість течії, тоді довжина відрізка АД буде зображати швидкість катера за течією, а АС (ВС = ВД) – швидкість катера проти течії. АД більше за АС на подвійну швидкість течії (подвійний відрізок ВД).

Далі можна перейти до розв'язування задачі, спираючись на поняття, сформовані під час розв'язування попередніх задач.

Розв'язання:

1) 96: 16 = 6 (год) – йшов катер за течією;

2) 14 – 6 = 8 (год) – йшов катер проти течії;

3) 96: 8 = 12 (км/год) – швидкість катера проти течії;

4) 16 – 12 = 4 (км/год) – на стільки більша швидкість катера за течією, ніж проти течії (подвійна швидкість течії);

5) 4: 2 = 2 (км/год) – швидкість течії.

Відповідь. 2 км/год.

Задача 13. Від пристані А одночасно у протилежних напрямках вирушають пліт і катер. Пліт спускається вниз за течією зі швидкістю 2 км/год, а катер йде проти течії. Через який час відстань між ними становитиме 84 км, якщо власна швидкість катера (у стоячій воді) – 14 км/год? Покажемо спочатку традиційне розв'язання цієї задачі.

Розв'язання:

1) 14 – 2 = 12 (км/год) – швидкість катера проти течії;

2) 12 + 2 = 14 (км/год) – швидкість віддалення;

3) 84: 14 = 6 (год) – час, за який відстань між плотом і катером становитиме 84 км.

Відповідь. 6 год.

Під час опрацювання цієї задачі можна поставити такі запитання:

– На якій відстані від пристані А знаходитимуться окремо катер і пліт і яка відстань буде між ними через 6 год? Щоб відповісти, треба знати швидкість течії.

Задача 14. Від пристані А спускається вниз за течією у напрямку до пристані В пліт. Одночасно з плотом від пристані В до пристані А вирушає катер. Відстань між А і В – 96 км, швидкість течії – 2 км/год; швидкість катера проти течії – 14 км/год. Через який час відбудеться зустріч катера з плотом.

Розв'язання:

1) 14 + 2 = 16 (км/год) – швидкість зближення;

2) 96: 16 = 6 (год) – час, через який катер зустрінеться з плотом.

Відповідь. 6 год.

Розглянемо методику розв’язування задач на знаходження середньої швидкості.

Поняття «середнє арифметичне кількох чисел» у підручнику вводиться індуктивно. Спочатку учням пропонуються задачі на знаходження середньої швидкості руху автомобіля. Вважається, що пояснення до розв'язання цих задач повинен дати вчитель. Далі розглядається розв'язання такої задачі.

Страницы: 7 8 9 10 11 12 13

Цікаве про педагогіку і навчання:

Види пам'яті
Форми прояву пам'яті надзвичайно багатообразні. Пояснюється це тим, що пам'ять обслуговує всі види багатообразної діяльності людини. У основу видової класифікації пам'яті покладено три основні критер ...

Розробка та використання тестових завдань
При розробці тестів використовую різні підходи. При складанні тестів доцільно чергувати завдання з різними формами подачі даних, що дозволить знизити ймовірність перевтоми, яка зумовлюється одноманіт ...

Сімейне виховання

Сімейне виховання

Загальновідомо, що становлення повноцінної особистості дитини залежить насамперед від системи стосунків у сім’ї.
Музичне виховання

Музичне виховання

Найскладнішою проблемою сучасної загальноосвітньої школи є забезпечення художньо-творчого розвитку учнів.

Головні теми

Copyright © 2021 - All Rights Reserved - www.educationua.net